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Prediction of acidity constant for substituted acetic acids in
water using artificial neural networks
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Linear and non-linear quantitative structure-activity relationships have been successfully developed for the modelling
and prediction of acidity constant (pK,) of 87 substituted acetic acids with diverse chemical structures. The descriptors
appearing in the multi-parameter linear regression (MLR) model are considered as inputs for developing the back-
propagation artificial neural network (BP-ANN). ANN model is constructed using two molecular descriptors; the most
positive charge of acidic hydrogen atom (q*) and most negative charge of the carboxylic oxygen atom (q) as inputs and its
output is pK,. It has been found that properly selected and trained neural network with 53 substituted acetic acids could
fairly represent dependence of the acidity constant on molecular descriptors. For evaluation of the predictive power of the
generated ANN, an optimized network has been applied for prediction pK, values of 17 compounds in the prediction set.
Mean percentage deviation (MPD) for prediction set using the MLR and ANN models are 9.135 and 1.362, respectively.
These improvements are due to the fact that the pK, of substituted acetic acids demonstrates non-linear correlations with the
molecular descriptors.
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Quantitative Structure-Property/Activity relationships
(QSPRs/QSARs) now correlate chemical structure to
a wide variety of physical, chemical, biological
(including biomedical, toxicological, ecotoxico-
logical) and technological properties*®. QSPR/QSAR
models are essentially calibration models in which the
independent variables are molecular descriptors that
describe the structure of molecules and the dependent
variable is the property/activity of interest”'°. The
development of a QSPR/QSAR models dependent
upon the availability of a set of compounds (the
training or calibration set) for each of which the value
of the property/activity of interest is known and the
necessary molecular descriptors can be calculated.
Since these theoretical descriptors are determined
solely from computational methods, a priori
predictions of the properties/activities of compounds
are possible, no laboratory measurements are needed
thus saving time, space, materials, equipment and
alleviating safety (toxicity) and disposal concerns. To
obtain a significant correlation, it is crucial that
appropriate descriptors be employed**2.

Many different techniques for constructing
QSPR/QSAR models have been used including multi-
parameter linear regression (MLR), principal
component analysis (PCA) and partial least-squares
regression (PLS)™™. In addition, artificial neural
networks (ANNSs) have become popular due to their
success where complex non-linear relationships exist
amongst data'®*®. ANNs are biologically inspired
computer programs designed to simulate the way in
which the human brain processes information. ANNs
gather their knowledge by detecting the patterns and
relationships in data and learned (or trained) through
experience, not from programming. The behaviour of
a neural network is determined by transfer functions
of its neurons, by learning rule, and by the
architecture itself. An ANN is formed from artificial
neuron or processing elements (PE), connected with
coefficients (weights), which constitute the neural
structure and are organized in layers. The layers of
neurons between the input and output layers are called
hidden layers. The wide applicability of ANNs stems
from their flexibility and ability to model non-linear
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systems without prior knowledge of an empirical
model. Neural networks do not need explicit
formulation of the mathematical or physical
relationships of the handled problem. These give
ANNs an advantage over traditional fitting methods
for some chemical applications. For these reasons in
recent years, ANNs have been applied to a wide
variety of chemical problems such as simulation of
mass spectra, ion interaction chromatography,
aqueous  solubility and partition coefficient,
simulation of nuclear magnetic resonance spectra,
prediction of bioconcentration factor, solvent effects
on reaction rate, prediction of normalized polarity
parameter in mixed solvent systems and acidity
constant of phenols and benzoic acid**?.

The interpretation and prediction of pK, values for
chemical compounds are of general importance and
usefulness for chemists®®. The acidity of molecules
relates to molecular structure in a complex way.
Although in the last few years several theoretical
studies have been performed for correlation of acidity
constant of acids, but in these studies linear equations
have been used®” .

Very recently, QSAR models have been developed
for correlation of acidity constant of phenols and
benzoic acids in water®*2 In order to develop the
idea, in this work the method has been applied for
acidity constant of substituted acetic acids in water. In
the first step, a MLR model was constructed. Then for
inspection of non-linear interactions/relation between
different molecular descriptors of the acids, an ANN
model was generated for prediction of the pK, values
and the results were compared with the experimental
and calculated values using the MLR model.

Results and Discussion

Multi-parameter linear correlation of pK, values for
53 substituted acetic acids versus the molecular
descriptors in the training set gives Eqgn. 1.

pK, = 26.897(3.210) -127.808(+11.889)q" +
26.580(+3.060)q ()

n = 53; R? = 0.816; MPD = 11.094; RMSE = 0.4307;
Bq+ = -0.656; Bg. = 0.530

It is clear that the pK, of the acids correlates with
most positive charge of acidic hydrogen atom (q*) and
most negative charge of carboxylic oxygen atom (g-)
descriptors. As can be seen, acidity of acetic acids
increases with increasing q* and decreases with g
With increasing g, interactions of water with acidic

hydrogen of acetic acids increases, then it can be
easily removed from the compounds. Acidity constant
of the compounds decreases with increasing ¢-
descriptor, because basicity of carboxylic oxygen
atom increases with increasing this descriptor. Effects
of g* on the acidity are higher than that of g, because
standardized coefficients of g is higher than that of
the other descriptor. The calculated values of pK, for
the compounds in training, validation and prediction
sets using the MLR model have been plotted versus
the experimental values of it (Figure 1).

In the MLR model it is assumed that all the
molecular descriptors are independent of each other
and truly additive as well as relevant to the property
under study. ANNs are particularly well-suited for
QSAR/QSPR models because of their ability to
extract nonlinear information present in the
descriptors. For this reason the next step in this work
was generation of the ANN model. There are no
rigorous theoretical principles for choosing the proper
network topology; so different structures were tested
in order to obtain the optimal hidden neurons and
training cycles??. Before training the network, the
number of nodes in the hidden layer was optimized.
In order to optimize the number of nodes in the
hidden layer, several training sessions were conducted
with different numbers of hidden nodes (from one to
seventeen). The root mean squared error of training
(RMSET) and validation (RMSEV) sets were
obtained at various iterations for different number of
neurons at the hidden layer and the minimum value of
RMSEV was recorded as the optimum value. Plot of
RMSET and RMSEYV versus the number of nodes in
the hidden layer has been shown in Figure 2. It is
clear that the fifteen nodes in hidden layer is optimum
value.

This network consists of two inputs (including q*
and g descriptors), the same descriptors in the MLR
model, and one output for pK, Then an ANN with
architecture 2-15-1 was generated. It is noteworthy
that training of the network was stopped when the
RMSEV started to increase i.e. when overtraining
begins. The overtraining causes the ANN to loose its
prediction power®. Therefore, during training of the
networks, it is desirable that iterations are stopped
when overtraining begins. To control the overtraining
of the network during the training procedure, the
values of RMSET and RMSEV were calculated and
recorded to monitor the extent of the learning in
various iterations. Results showed that overfitting
does not seen in the optimum architecture (Figure 3).
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Figure 1 — Plot of the calculated values of pK, from the MLR model versus the
experimental values of it for training, validation and prediction sets
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Figure 2 — Plot of RMSE for training and validation sets versus the number of nodes in
hidden layer
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Figure 3 — Plot of RMSE for training and validation sets versus the number of iterations

The generated ANN was then trained using the
training and validation sets for optimization of the
weights and biases. For the evaluation of the
predictive power of the generated ANN, an optimized
network was applied for prediction the pK, values of
various acetic acids in the prediction set, which were
not used in the modelling procedure (Table 1). The
calculated values of pK, for the compounds in
training, validation and prediction sets using the ANN
model have been plotted versus the experimental
values of it in Figure 4.

As expected, the calculated values of pK, are in
very good agreement with those of the experimental
values. The correlation equation for all of the
calculated values of pK, from the ANN model and the
experimental values is as follows:

pK, (cal) = 0.9939 pK, (exp) + 0.0199 .. (2)
(R? = 0.993; MPD = 1.307; RMSE = 0.0770; F =
12815.68)

Similarly, the correlation of pK, (cal) versus pK,
(exp) values in the prediction set gives equation (3):

pK, (cal) =0.9722 pK, (exp) + 0.0751 .. (3)

(R? = 0.991; MPD = 1.362; RMSE = 0.0857; F =
1569.37)

Plot of IPD for pK, values in the training,
validation and prediction sets versus the experimental
values of it has been illustrated in Figure 5. The
propagation of errors in both sides of zero is random
and the slope (0.9939) and intercept (0.0199) of the
linear regression of the calculated values versus the
experimental values are very close to the ideal
behaviour (ideal slope 1 and the ideal intercept 0).

Table 11 compares the results obtained using the
MLR and ANN models. The squared correlation
coefficient (R%) and RMSE of the models for total,
training, validation and prediction sets demonstrate
potential of the ANN model for prediction of pK,
values of various substituted acetic acids in water.

As a result, it was found that properly selected and
trained neural network could fairly represent
dependence of the acidity constant of substituted
acetic acids in water on the molecular descriptors.
Then the optimized neural network could simulate the
complicated nonlinear relationship between pK,
values and the molecular descriptors. The squared
correlation coefficients (R?) and RMSE are 0.991 and
0.0857 for the prediction set by the MLR model
should be compared with the values of 0.809 and
0.3738, respectively, for the ANN model. It can be
seen from Table Il that although the parameters
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Table I — Experimental and calculated values of pK, for various substituted acetic acids in water at 25°C for training, validation and
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prediction sets by multi-parameter linear regression (MLR) and artificial neural network (ANN) models along with
individual percent deviation (IPD)*— Contd

Compd Exp MLR IPDmLr ANN IPDanN
Training set

Acetic acid 4.76 4315 9.357 4.782 -0.462
Allylacetic acid 4.68 4.157 11.171 4.373 6.556
Bromoacetic acid 2.90 2.597 10.442 2.916 -0.562
2-(3'-Bromophenoxy)acetic acid 3.09 3.097 -0.224 3.138 -1.566
2-(4'-Bromophenoxy)acetic acid 3.13 3.101 0.930 3.099 1.000
2-Bromo-2-phenylacetic acid 2.21 2.935 -32.783 2.172 1.715
4-tert-Butylphenylacetic acid 4.42 4.363 1.287 4.386 0.765
Chloroacetic acid 2.87 2.675 6.788 2.847 0.791
Chlorodifluoroacetic acid 0.46 0.836 -81.733 0.428 6.935
2-Chlorophenoxyacetic acid 3.05 3.086 -1.196 3.138 -2.879
3-Chlorophenoxyacetic acid 3.07 3.113 -1.398 3.121 -1.664
4-Chlorophenoxyacetic acid 3.10 3.141 -1.335 3.069 0.994
3-Chlorophenylacetic acid 414 3.980 3.874 4.293 -3.696
4-Chlorophenylacetic acid 4.19 4.082 2.575 4.182 0.193
Cyanoacetic acid 2.46 2.600 -5.673 2.456 0.150
m-Cyanophenoxyacetic acid 3.03 2.964 2.165 3.011 0.637
p-Cyanophenoxyacetic acid 2.93 2.957 -0.935 2.949 -0.631
1,1-Cyclohexanediacetic acid 3.49 4,199 -20.302 3.751 -7.476
1,1-Cyclopentyldiacetic acid 3.80 4.215 -10.926 3.855 -1.455
trans-Cyclopentane-1,2-diacetic acid 4.43 4.040 8.798 4.504 -1.675
Dibromoacetic acid 1.39 1.788 -28.658 1.392 -0.151
2,4-Dichlorophenoxyacetic acid 2.64 2.932 -11.060 2.685 -1.697
4,6-Dichlorophenoxy-2-methylacetic acid 3.13 3.664 -17.069 3.359 -7.307
Difluoroacetic acid 1.33 1.947 -46.386 1.330 -0.008
Dimethylphenylsilylacetic acid 5.27 4.651 11.740 5.270 0.000
2,4-Dinitrophenylacetic acid 3.50 2.261 35.407 3.500 0.009
Diphenylacetic acid 3.94 4.041 -2.568 3.987 -1.193
2-Fluorophenoxyacetic acid 3.08 3.030 1.624 3.136 -1.802
3-Fluorophenoxyacetic acid 3.08 3.086 -0.192 3.143 -2.042
4-Fluorophenoxyacetic acid 3.13 3.144 -0.444 3.062 2.188
Hydroxy-iodo-phenylacetic acid 3.26 1.899 41.739 3.260 0.003
Hydroxy-phenyl-acetic acid 341 3.522 -3.279 3.223 5.475
Indole-3-acetic acid 4.75 4.670 1.685 4.756 -0.133
3-lodophenoxyacetic acid 3.13 3.099 0.977 3.132 -0.061
4-lodophenoxyacetic acid 3.16 3.101 1.870 3.099 1.940
2-lodophenylacetic acid 4.04 4.252 -5.236 3.905 3.332
4-Isopropylphenylacetic acid 4.39 4.206 4,187 4311 1.802
Mercaptoacetic acid 3.60 2.824 21.564 3.605 -0.142

— Contd
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Table I — Experimental and calculated values of pK, for various substituted acetic acids in water at 25°C for training, validation and
prediction sets by multi-parameter linear regression (MLR) and artificial neural network (ANN) models along with
individual percent deviation (IPD)*— Contd

No. Compd Exp MLR IPDpLr ANN IPDanN
39 Methoxyacetic acid 3.57 3.660 -2.532 3.571 -0.025
40 (4'-Methoxy)phenoxyacetic acid 321 3.320 -3.439 3.201 0.283
41 4'-Methoxyphenylacetic acid 4.36 4.328 0.743 4.381 -0.479
42 (2-Methylphenoxy)acetic acid 3.23 3.366 -4.222 3.224 0.186
43 (4-Methylphenyl)acetic acid 4.37 4.339 0.719 4.391 -0.490
44 Methylsulfonylacetic acid 2.36 2.724 -15.440 2.360 0.000
45 Nitroacetic acid 1.68 1.320 21.417 1.680 -0.012
46 (4-Nitrophenoxy)acetic acid 2.89 2.668 7.685 2.892 -0.073
47 2-Nitrophenylacetic acid 4.00 2971 25.730 4.003 -0.077
48 3-Nitrophenylacetic acid 3.97 3.318 16.418 3.969 0.033
49 Phenylacetic acid 4.31 4.296 0.334 4.444 -3.118
50 Phenylsulfenylacetic acid 2.66 2.850 -7.145 2.662 -0.064
51 Phenylsulfonylacetic acid 2.44 3.033 -24.304 2.440 0.000
52 Trifluoroacetic acid 0.50 0.597 -19.308 0.524 -4.800
53 Triphenylacetic acid 3.96 4.152 -4.845 3.961 -0.013
Validation set
54 (3-Bromophenyl)hydroxyacetic acid 3.13 3.138 -0.258 3.129 0.019
55 2-(Bromophenyl)acetic acid 4.05 4.278 -5.618 4.063 -0.331
56 (4-Chloro-3-nitrophenoxy)acetic acid 2.96 2.565 13.330 2.959 0.027
57 4-Chlorophenoxy-2-methylacetic acid 3.26 3.899 -19.590 3.278 -0.537
58 0-Cyanophenoxyacetic acid 2.98 2.703 9.295 2.958 0.745
59 Cyclohexylacetic acid 451 4.412 2.170 4.494 0.359
60 Dichloroacetylacetic acid 211 3.141 -48.877 2.109 0.047
61 2-6-Dimethylphenoxyacetic acid 3.36 4.025 -19.806 3.362 -0.048
62 Fluoroacetic acid 2.59 3.034 -17.130 2.590 -0.012
63 Hydroxyacetic acid 3.83 3.575 6.660 3.805 0.648
64 2-lodophenoxyacetic acid 3.17 3.011 5.015 3.032 4.360
65 4-lodophenylacetic acid 4.18 4.021 3.813 4.239 -1.414
66 (3'-Methoxy)phenoxyacetic acid 3.14 3.260 -3.819 3.145 -0.172
67 (4-Methylphenoxy)acetic acid 3.22 3.339 -3.693 3.227 -0.217
68 (3-Nitrophenoxy)acetic acid 2.95 2.672 9.426 2.961 -0.373
69 Phenoxyacetic acid 3.17 3.312 -4.476 3.179 -0.274
70 Trichloroacetic acid 0.52 1.143 -119.790 0.521 -0.231
Prediction set
71 2-(2'-Bromophenoxy)acetic acid 3.12 3.030 2.900 3.074 1.484
72 4-(Bromophenyl)acetic acid 419 4.023 3.983 4.162 0.680
73 (3-Chlorophenyl)hydroxyacetic acid 3.24 3.154 2.652 3.241 -0.019
74 2-Chlorophenylacetic acid 4.07 4.286 -5.308 4.011 1.459
75 2-Cyano-2-methyl-2-phenylacetic acid 2.29 3.044 -32.923 2.269 0.926
76 Cyclohexylcyanoacetic acid 2.37 3.102 -30.905 2.442 -3.017

— Contd
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Table I — Experimental and calculated values of pK, for various substituted acetic acids in water at 25°C for training, validation and
prediction sets by multi-parameter linear regression (MLR) and artificial neural network (ANN) models along with
individual percent deviation (IPD)*— Contd

No. Compd

77 Dichloroacetic acid

78 (3,4-Dimethoxy)phenylacetic acid
79 4-Ethylphenylacetic acid

80 4-Fluorophenylacetic acid

81 lodoacetic acid

82 3-lodophenylacetic acid

83 (2'-Methoxy)phenoxyacetic acid
84 (3-Methylphenoxy)acetic acid
85 (2-Nitrophenoxy)acetic acid

86 4-Nitrophenylacetic acid

87 Thiocyanatoacetic acid

Exp MLR IPDmigr ANN IPDann
1.26 1.856 -47.331 1.259 0.095
4.33 4173 3.632 4.455 -2.889
4.37 4.339 0.719 4.391 -0.490
4.25 4.092 3.715 3.978 6.398
3.18 2.755 13.379 3.190 -0.299
4.16 3.953 4.985 4.010 3.603
3.23 3.360 -4.010 3.249 -0.594
3.20 3.341 -4.418 3.228 -0.872
2.90 2.363 18.526 2.908 -0.272
3.85 3.505 8.958 3.849 0.023
2.58 2.255 12.601 2.581 -0.031

(a) Exp refers to the experimental values of pK,, MLR and ANN refer to multi-parameter linear regression and artificial neural

network calculated values of pK,, respectively.
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Figure 4 — Plot of the calculated values of pK, from the ANN model versus the
experimental values of it for training, validation and prediction sets

appearing in the MLR model are used as inputs for
the generated ANN, the statistics has shown a large
improvement. These improvements are due to the fact
that pK, values of acetic acids demonstrate non-linear
correlations with the molecular descriptors.

Experimental Section
Descriptor generation. In order to calculate the
theoretical descriptors, the z-matrices (molecular

models) were constructed with the aid of HyperChem
7.0 and molecular structures were optimized using
AM1 algorithm®. In order to calculate some of
electronic theoretical descriptors, the molecular
geometries of molecules were further optimized with
the same algorithm in MOPAC program version 6.0.
The other molecular electronic descriptors were
calculated by Dragon package version 2.1 (Ref. 34).
For this propose the output of the HyperChem
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Figure 5 — Plot of the residual for calculated values of pK, from the ANN model versus
the experimental values of it for training, validation and prediction set

Table 11 — Comparsion of statistical parameters obtained by the MLR and ANN models for
correlation of acidity constant of substituted acetic acids with molecular descriptors?®

MOdel thot thrain szalid I:ezpred
MLR 0.805 0.816 0.787 0.809
ANN 0.993 0.993 0.998 0.991

RMSE;x RMSEysn RMSEyaiqs  RMSEpreq
0.4186 0.4307 0.4225 0.3738
0.0770 0.0830 0.0381 0.0857

(a) Subscript train is referring to the training set, valid is referring to the validation set and the
pred is referring to the prediction set, tot is referring to the total data set, R is the correlation

coefficient.

software for each compound fed into the Dragon
program and the descriptors were calculated. As a
result, a total of 18 theoretical descriptors were
calculated for each compound in the data sets (87
substituted acetic acids).

Linear correlations. Acidity constant of acetic
acids are literature values at 25°C*. MLR model was
developed for prediction pK, values by molecular
descriptors. The method of stepwise multi-parameter
linear regression was used to select the most
important descriptors  to calculate the coefficients
relating the pK, to the descriptors. The best MLR
model is one that has high correlation coefficient and
F-value and low standard error. The MLR models

were generated using spss/pc software package
release 9.

Neural network generation. The specification of
a typical neural network model requires the choice of
the type of inputs, the number of hidden layers, the
number of neurons in each hidden layer and the
connection structure between the inputs and output
layers. The number of input nodes in the ANNs was
equal to the number of molecular descriptors in the
MLR model. A three-layer network with a sigmoidal
transfer function was designed. The initial weights
were randomly selected between 0 and 1. Before
training, the input and output values were normalized
between 0.1 and 0.9. The optimization of the weights
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and biases was carried out according to Levenberg-
Marquardt algorithms for back-propagation of error®.
The data set was randomly divided into three groups:
a training set, a validation set and a prediction set
consisting of 53, 17 and 17 molecules, respectively.
The training set was used for training of the ANN and
the wvalidation (monitoring) set was used for
determination the extent of training. The
generalization ability of the model was checked using
the prediction set®’.

The performances of training, validation and
prediction of ANNs are evaluated by the mean
percentage deviation (MPD) and root-mean squared
error (RMSE), which are defined as follows:

_100 N |(Piexp_Pical)|
MPD == Z‘ P | - (4)

i=1

Pexp _ PcaI)Z

RMSE :\/i(T .. (5)
i=1

where P and P are experimental and calculated
values of pK, with the ANN model and N denote the
number of data points.

Individual percent deviation (IPD) is defined as
follows:

_calc _ Pexp
IPD=100x | —1 .. (6)
Pexp

The processing of the data was carried using
Matlab 6.5 (Ref. 38). The neural networks were
implemented using Neural Network Toolbox Ver. 4.0
for Matlab.

Conclusion

A two-descriptor non-linear computational neural
network model has been developed for prediction of
acidity constant (pK,) for various acetic acids in water
using quantitative structure-activity relationship.
Comparison of the values of RMSE for training,
validation and prediction sets (and other statistical
parameters in Table Il) for the MLR and ANN
models demonstrate superiority of the ANN model
over the regression model. Root-mean square error of
0.3738 for the prediction set by the MLR model
should be compared with the value of 0.0857 for the
ANN model. Since the improvement of the results
obtained using nonlinear model (ANN) s
considerable, it can be concluded that the non-linear

characteristics of the molecular descriptors on the pK,
values of substituted acetic acids in water is serious.
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