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Linear and non-linear quantitative structure-activity relationships have been successfully developed for the modelling 
and prediction of acidity constant (pKa) of 87 substituted acetic acids with diverse chemical structures. The descriptors 
appearing in the multi-parameter linear regression (MLR) model are considered as inputs for developing the back-
propagation artificial neural network (BP-ANN). ANN model is constructed using two molecular descriptors; the most 
positive charge of acidic hydrogen atom (q+) and most negative charge of the carboxylic oxygen atom (q-) as inputs and its 
output is pKa. It has been found that properly selected and trained neural network with 53 substituted acetic acids could 
fairly represent dependence of the acidity constant on molecular descriptors. For evaluation of the predictive power of the 
generated ANN, an optimized network has been applied for prediction pKa values of 17 compounds in the prediction set. 
Mean percentage deviation (MPD) for prediction set using the MLR and ANN models are 9.135 and 1.362, respectively. 
These improvements are due to the fact that the pKa of substituted acetic acids demonstrates non-linear correlations with the 
molecular descriptors. 
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Quantitative Structure-Property/Activity relationships 
(QSPRs/QSARs) now correlate chemical structure to 
a wide variety of physical, chemical, biological 
(including biomedical, toxicological, ecotoxico-
logical) and technological properties1-6. QSPR/QSAR 
models are essentially calibration models in which the 
independent variables are molecular descriptors that 
describe the structure of molecules and the dependent 
variable is the property/activity of interest7-10. The 
development of a QSPR/QSAR models dependent 
upon the availability of a set of compounds (the 
training or calibration set) for each of which the value 
of the property/activity of interest is known and the 
necessary molecular descriptors can be calculated. 
Since these theoretical descriptors are determined 
solely from computational methods, a priori 
predictions of the properties/activities of compounds 
are possible, no laboratory measurements are needed 
thus saving time, space, materials, equipment and 
alleviating safety (toxicity) and disposal concerns. To 
obtain a significant correlation, it is crucial that 
appropriate descriptors be employed11,12. 

Many different techniques for constructing 
QSPR/QSAR models have been used including multi-
parameter linear regression (MLR), principal 
component analysis (PCA) and partial least-squares 
regression (PLS)13-15. In addition, artificial neural 
networks (ANNs) have become popular due to their 
success where complex non-linear relationships exist 
amongst data16-18. ANNs are biologically inspired 
computer programs designed to simulate the way in 
which the human brain processes information. ANNs 
gather their knowledge by detecting the patterns and 
relationships in data and learned (or trained) through 
experience, not from programming. The behaviour of 
a neural network is determined by transfer functions 
of its neurons, by learning rule, and by the 
architecture itself. An ANN is formed from artificial 
neuron or processing elements (PE), connected with 
coefficients (weights), which constitute the neural 
structure and are organized in layers. The layers of 
neurons between the input and output layers are called 
hidden layers. The wide applicability of ANNs stems 
from their flexibility and ability to model non-linear 
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systems without prior knowledge of an empirical 
model. Neural networks do not need explicit 
formulation of the mathematical or physical 
relationships of the handled problem. These give 
ANNs an advantage over traditional fitting methods 
for some chemical applications. For these reasons in 
recent years, ANNs have been applied to a wide 
variety of chemical problems such as simulation of 
mass spectra, ion interaction chromatography, 
aqueous solubility and partition coefficient, 
simulation of nuclear magnetic resonance spectra, 
prediction of bioconcentration factor, solvent effects 
on reaction rate, prediction of normalized polarity 
parameter in mixed solvent systems and acidity 
constant of phenols and benzoic acid19-25. 

The interpretation and prediction of pKa values for 
chemical compounds are of general importance and 
usefulness for chemists26. The acidity of molecules 
relates to molecular structure in a complex way. 
Although in the last few years several theoretical 
studies have been performed for correlation of acidity 
constant of acids, but in these studies linear equations 
have been used27-30. 

Very recently, QSAR models have been developed 
for correlation of acidity constant of phenols and 
benzoic acids in water31,32. In order to develop the 
idea, in this work the method has been applied for 
acidity constant of substituted acetic acids in water. In 
the first step, a MLR model was constructed. Then for 
inspection of non-linear interactions/relation between 
different molecular descriptors of the acids, an ANN 
model was generated for prediction of the pKa values 
and the results were compared with the experimental 
and calculated values using the MLR model. 

Results and Discussion 

Multi-parameter linear correlation of pKa values for 
53 substituted acetic acids versus the molecular 
descriptors in the training set gives Eqn. 1. 

pKa = 26.897(±3.210) -127.808(±11.889)q+ + 
26.580(±3.060)q- ... (1) 

n = 53; R2 = 0.816; MPD = 11.094; RMSE = 0.4307; 
βq+ = -0.656; βq- = 0.530 

It is clear that the pKa of the acids correlates with 
most positive charge of acidic hydrogen atom (q+) and 
most negative charge of carboxylic oxygen atom (q-) 
descriptors. As can be seen, acidity of acetic acids 
increases with increasing q+ and  decreases with q-. 
With increasing q+, interactions of water with acidic 

hydrogen of acetic acids increases, then it can be 
easily removed from the compounds. Acidity constant 
of the compounds decreases with increasing q- 
descriptor, because basicity of carboxylic oxygen 
atom increases with increasing this descriptor. Effects 
of q+ on the acidity are higher than that of q-, because 
standardized coefficients of q+ is higher than that of 
the other descriptor. The calculated values of pKa for 
the compounds in training, validation and prediction 
sets using the MLR model have been plotted versus 
the experimental values of it (Figure 1). 

In the MLR model it is assumed that all the 
molecular descriptors are independent of each other 
and truly additive as well as relevant to the property 
under study. ANNs are particularly well-suited for 
QSAR/QSPR models because of their ability to 
extract nonlinear information present in the 
descriptors. For this reason the next step in this work 
was generation of the ANN model. There are no 
rigorous theoretical principles for choosing the proper 
network topology; so different structures were tested 
in order to obtain the optimal hidden neurons and 
training cycles22. Before training the network, the 
number of nodes in the hidden layer was optimized. 
In order to optimize the number of nodes in the 
hidden layer, several training sessions were conducted 
with different numbers of hidden nodes (from one to 
seventeen). The root mean squared error of training 
(RMSET) and validation (RMSEV) sets were 
obtained at various iterations for different number of 
neurons at the hidden layer and the minimum value of 
RMSEV was recorded as the optimum value. Plot of 
RMSET and RMSEV versus the number of nodes in 
the hidden layer has been shown in Figure 2. It is 
clear that the fifteen nodes in hidden layer is optimum 
value. 

This network consists of two inputs (including q+ 
and q- descriptors), the same descriptors in the MLR 
model, and one output for pKa. Then an ANN with 
architecture 2-15-1 was generated. It is noteworthy 
that training of the network was stopped when the 
RMSEV started to increase i.e. when overtraining 
begins. The overtraining causes the ANN to loose its 
prediction power25. Therefore, during training of the 
networks, it is desirable that iterations are stopped 
when overtraining begins. To control the overtraining 
of the network during the training procedure, the 
values of RMSET and RMSEV were calculated and 
recorded to monitor the extent of the learning in 
various iterations. Results showed that overfitting 
does not seen in the optimum architecture (Figure 3). 
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Figure 1 — Plot of the calculated values of pKa from the MLR model versus the 

experimental values of it for training, validation and prediction sets 
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Figure 2 — Plot of RMSE for training and validation sets versus the number of nodes in 

hidden layer 
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The generated ANN was then trained using the 
training and validation sets for optimization of the 
weights and biases. For the evaluation of the 
predictive power of the generated ANN, an optimized 
network was applied for prediction the pKa values of 
various acetic acids in the prediction set, which were 
not used in the modelling procedure (Table I). The 
calculated values of pKa for the compounds in 
training, validation and prediction sets using the ANN 
model have been plotted versus the experimental 
values of it in Figure 4. 

As expected, the calculated values of pKa are in 
very good agreement with those of the experimental 
values. The correlation equation for all of the 
calculated values of pKa from the ANN model and the 
experimental values is as follows: 

pKa (cal) = 0.9939 pKa (exp) + 0.0199  ... (2) 

(R2 = 0.993; MPD = 1.307; RMSE = 0.0770; F = 
12815.68) 

Similarly, the correlation of pKa (cal) versus pKa 
(exp) values in the prediction set gives equation (3): 

pKa (cal) = 0.9722 pKa (exp) + 0.0751 ... (3) 

(R2 = 0.991; MPD = 1.362; RMSE = 0.0857; F = 
1569.37) 

Plot of IPD for pKa values in the training, 
validation and prediction sets versus the experimental 
values of it has been illustrated in Figure 5. The 
propagation of errors in both sides of zero is random 
and the slope (0.9939) and intercept (0.0199) of the 
linear regression of the calculated values versus the 
experimental values are very close to the ideal 
behaviour (ideal slope 1 and the ideal intercept 0). 
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Figure 3 — Plot of RMSE for training and validation sets versus the number of iterations 

 

Table II compares the results obtained using the 
MLR and ANN models. The squared correlation 
coefficient (R2) and RMSE of the models for total, 
training, validation and prediction sets demonstrate 
potential of the ANN model for prediction of pKa 
values of various substituted acetic acids in water. 

As a result, it was found that properly selected and 
trained neural network could fairly represent 
dependence of the acidity constant of substituted 
acetic acids in water on the molecular descriptors. 
Then the optimized neural network could simulate the 
complicated nonlinear relationship between pKa 
values and the molecular descriptors. The squared 
correlation coefficients (R2) and RMSE are 0.991 and 
0.0857 for the prediction set by the MLR model 
should be compared with the values of 0.809 and 
0.3738, respectively, for the ANN model. It can be 
seen from Table II that although the parameters  
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Table I — Experimental and calculated values of pKa for various substituted acetic acids in water at 25ºC for training, validation and 
prediction sets by multi-parameter linear regression (MLR) and artificial neural network (ANN) models along with 

individual percent deviation (IPD)a ⎯  Contd 
 

No. Compd Exp MLR IPDMLR ANN IPDANN 

 Training set      
1 Acetic acid 4.76 4.315 9.357 4.782 -0.462 
2 Allylacetic acid 4.68 4.157 11.171 4.373 6.556 
3 Bromoacetic acid 2.90 2.597 10.442 2.916 -0.562 
4 2-(3'-Bromophenoxy)acetic acid 3.09 3.097 -0.224 3.138 -1.566 
5 2-(4'-Bromophenoxy)acetic acid 3.13 3.101 0.930 3.099 1.000 
6 2-Bromo-2-phenylacetic acid 2.21 2.935 -32.783 2.172 1.715 
7 4-tert-Butylphenylacetic acid 4.42 4.363 1.287 4.386 0.765 
8 Chloroacetic acid 2.87 2.675 6.788 2.847 0.791 
9 Chlorodifluoroacetic acid 0.46 0.836 -81.733 0.428 6.935 
10 2-Chlorophenoxyacetic acid 3.05 3.086 -1.196 3.138 -2.879 
11 3-Chlorophenoxyacetic acid 3.07 3.113 -1.398 3.121 -1.664 
12 4-Chlorophenoxyacetic acid 3.10 3.141 -1.335 3.069 0.994 
13 3-Chlorophenylacetic acid 4.14 3.980 3.874 4.293 -3.696 
14 4-Chlorophenylacetic acid 4.19 4.082 2.575 4.182 0.193 
15 Cyanoacetic acid 2.46 2.600 -5.673 2.456 0.150 
16 m-Cyanophenoxyacetic acid 3.03 2.964 2.165 3.011 0.637 
17 p-Cyanophenoxyacetic acid 2.93 2.957 -0.935 2.949 -0.631 
18 1,1-Cyclohexanediacetic acid 3.49 4.199 -20.302 3.751 -7.476 
19 1,1-Cyclopentyldiacetic acid 3.80 4.215 -10.926 3.855 -1.455 
20 trans-Cyclopentane-1,2-diacetic acid 4.43 4.040 8.798 4.504 -1.675 
21 Dibromoacetic acid 1.39 1.788 -28.658 1.392 -0.151 
22 2,4-Dichlorophenoxyacetic acid 2.64 2.932 -11.060 2.685 -1.697 
23 4,6-Dichlorophenoxy-2-methylacetic acid 3.13 3.664 -17.069 3.359 -7.307 
24 Difluoroacetic acid 1.33 1.947 -46.386 1.330 -0.008 
25 Dimethylphenylsilylacetic acid 5.27 4.651 11.740 5.270 0.000 
26 2,4-Dinitrophenylacetic acid 3.50 2.261 35.407 3.500 0.009 
27 Diphenylacetic acid 3.94 4.041 -2.568 3.987 -1.193 
28 2-Fluorophenoxyacetic acid 3.08 3.030 1.624 3.136 -1.802 
29 3-Fluorophenoxyacetic acid 3.08 3.086 -0.192 3.143 -2.042 
30 4-Fluorophenoxyacetic acid 3.13 3.144 -0.444 3.062 2.188 
31 Hydroxy-iodo-phenylacetic acid 3.26 1.899 41.739 3.260 0.003 
32 Hydroxy-phenyl-acetic acid 3.41 3.522 -3.279 3.223 5.475 
33 Indole-3-acetic acid 4.75 4.670 1.685 4.756 -0.133 
34 3-Iodophenoxyacetic acid 3.13 3.099 0.977 3.132 -0.061 
35 4-Iodophenoxyacetic acid 3.16 3.101 1.870 3.099 1.940 
36 2-Iodophenylacetic acid 4.04 4.252 -5.236 3.905 3.332 
37 4-Isopropylphenylacetic acid 4.39 4.206 4.187 4.311 1.802 
38 Mercaptoacetic acid 3.60 2.824 21.564 3.605 -0.142 
      ⎯ Contd 
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Table I — Experimental and calculated values of pKa for various substituted acetic acids in water at 25ºC for training, validation and 
prediction sets by multi-parameter linear regression (MLR) and artificial neural network (ANN) models along with 

individual percent deviation (IPD)a ⎯  Contd 
 

No. Compd Exp MLR IPDMLR ANN IPDANN 

39 Methoxyacetic acid 3.57 3.660 -2.532 3.571 -0.025 
40 (4'-Methoxy)phenoxyacetic acid 3.21 3.320 -3.439 3.201 0.283 
41 4'-Methoxyphenylacetic acid 4.36 4.328 0.743 4.381 -0.479 
42 (2-Methylphenoxy)acetic acid 3.23 3.366 -4.222 3.224 0.186 
43 (4-Methylphenyl)acetic acid 4.37 4.339 0.719 4.391 -0.490 
44 Methylsulfonylacetic acid 2.36 2.724 -15.440 2.360 0.000 
45 Nitroacetic acid 1.68 1.320 21.417 1.680 -0.012 
46 (4-Nitrophenoxy)acetic acid 2.89 2.668 7.685 2.892 -0.073 
47 2-Nitrophenylacetic acid 4.00 2.971 25.730 4.003 -0.077 
48 3-Nitrophenylacetic acid 3.97 3.318 16.418 3.969 0.033 
49 Phenylacetic acid 4.31 4.296 0.334 4.444 -3.118 
50 Phenylsulfenylacetic acid 2.66 2.850 -7.145 2.662 -0.064 
51 Phenylsulfonylacetic acid 2.44 3.033 -24.304 2.440 0.000 
52 Trifluoroacetic acid 0.50 0.597 -19.308 0.524 -4.800 
53 Triphenylacetic acid 3.96 4.152 -4.845 3.961 -0.013 
 Validation set      
54 (3-Bromophenyl)hydroxyacetic acid 3.13 3.138 -0.258 3.129 0.019 
55 2-(Bromophenyl)acetic acid 4.05 4.278 -5.618 4.063 -0.331 
56 (4-Chloro-3-nitrophenoxy)acetic acid 2.96 2.565 13.330 2.959 0.027 
57 4-Chlorophenoxy-2-methylacetic acid 3.26 3.899 -19.590 3.278 -0.537 
58 o-Cyanophenoxyacetic acid 2.98 2.703 9.295 2.958 0.745 
59 Cyclohexylacetic acid 4.51 4.412 2.170 4.494 0.359 
60 Dichloroacetylacetic acid 2.11 3.141 -48.877 2.109 0.047 
61 2-6-Dimethylphenoxyacetic acid 3.36 4.025 -19.806 3.362 -0.048 
62 Fluoroacetic acid 2.59 3.034 -17.130 2.590 -0.012 
63 Hydroxyacetic acid 3.83 3.575 6.660 3.805 0.648 
64 2-Iodophenoxyacetic acid 3.17 3.011 5.015 3.032 4.360 
65 4-Iodophenylacetic acid 4.18 4.021 3.813 4.239 -1.414 
66 (3'-Methoxy)phenoxyacetic acid 3.14 3.260 -3.819 3.145 -0.172 
67 (4-Methylphenoxy)acetic acid 3.22 3.339 -3.693 3.227 -0.217 
68 (3-Nitrophenoxy)acetic acid 2.95 2.672 9.426 2.961 -0.373 
69 Phenoxyacetic acid 3.17 3.312 -4.476 3.179 -0.274 
70 Trichloroacetic acid 0.52 1.143 -119.790 0.521 -0.231 
 Prediction set      
71 2-(2'-Bromophenoxy)acetic acid 3.12 3.030 2.900 3.074 1.484 
72 4-(Bromophenyl)acetic acid 4.19 4.023 3.983 4.162 0.680 
73 (3-Chlorophenyl)hydroxyacetic acid 3.24 3.154 2.652 3.241 -0.019 
74 2-Chlorophenylacetic acid 4.07 4.286 -5.308 4.011 1.459 
75 2-Cyano-2-methyl-2-phenylacetic acid 2.29 3.044 -32.923 2.269 0.926 
76 Cyclohexylcyanoacetic acid 2.37 3.102 -30.905 2.442 -3.017 
      ⎯ Contd 
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Table I — Experimental and calculated values of pKa for various substituted acetic acids in water at 25ºC for training, validation and 
prediction sets by multi-parameter linear regression (MLR) and artificial neural network (ANN) models along with 

individual percent deviation (IPD)a ⎯  Contd 
 

No. Compd Exp MLR IPDMLR ANN IPDANN 

77 Dichloroacetic acid 1.26 1.856 -47.331 1.259 0.095 
78 (3,4-Dimethoxy)phenylacetic acid 4.33 4.173 3.632 4.455 -2.889 
79 4-Ethylphenylacetic acid 4.37 4.339 0.719 4.391 -0.490 
80 4-Fluorophenylacetic acid 4.25 4.092 3.715 3.978 6.398 
81 Iodoacetic acid 3.18 2.755 13.379 3.190 -0.299 
82 3-Iodophenylacetic acid 4.16 3.953 4.985 4.010 3.603 
83 (2'-Methoxy)phenoxyacetic acid 3.23 3.360 -4.010 3.249 -0.594 
84 (3-Methylphenoxy)acetic acid 3.20 3.341 -4.418 3.228 -0.872 
85 (2-Nitrophenoxy)acetic acid 2.90 2.363 18.526 2.908 -0.272 
86 4-Nitrophenylacetic acid 3.85 3.505 8.958 3.849 0.023 
87 Thiocyanatoacetic acid 2.58 2.255 12.601 2.581 -0.031 
(a) Exp refers to the experimental values of pKa, MLR and ANN refer to multi-parameter linear regression and artificial neural 
network calculated values of pKa, respectively. 
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Figure 4 — Plot of the calculated values of pKa from the ANN model versus the 

experimental values of it for training, validation and prediction sets 
 

appearing in the MLR model are used as inputs for 
the generated ANN, the statistics has shown a large 
improvement. These improvements are due to the fact 
that pKa values of acetic acids demonstrate non-linear 
correlations with the molecular descriptors. 

Experimental Section 
Descriptor generation. In order to calculate the 

theoretical descriptors, the z-matrices (molecular 

models) were constructed with the aid of HyperChem 
7.0 and molecular structures were optimized using 
AM1 algorithm33. In order to calculate some of 
electronic theoretical descriptors, the molecular 
geometries of molecules were further optimized with 
the same algorithm in MOPAC program version 6.0. 
The other molecular electronic descriptors were 
calculated by Dragon package version 2.1 (Ref. 34). 
For this propose the output of the HyperChem  
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software for each compound fed into the Dragon 
program and the descriptors were calculated. As a 
result, a total of 18 theoretical descriptors were 
calculated for each compound in the data sets (87 
substituted acetic acids). 

Linear correlations. Acidity constant of acetic 
acids are literature values at 25ºC35. MLR model was 
developed for prediction pKa values by molecular 
descriptors. The method of stepwise multi-parameter 
linear regression was used to select the most 
important descriptors   to calculate the coefficients 
relating the pKa to the descriptors. The best MLR 
model is one that has high correlation coefficient and 
F-value and low standard error. The MLR models 

were generated using spss/pc software package 
release 9. 
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Figure 5 — Plot of the residual for calculated values of pKa from the ANN model versus 

the experimental values of it for training, validation and prediction set 
 
 

Table II — Comparsion of statistical parameters obtained by the MLR and ANN models for 
correlation of acidity constant of substituted acetic acids with molecular descriptorsa 

 
Model R2

tot R2
train R2

valid R2
pred RMSEtot RMSEtrain RMSEvalid RMSEpred 

MLR 0.805 0.816 0.787 0.809 0.4186 0.4307 0.4225 0.3738 
ANN 0.993 0.993 0.998 0.991 0.0770 0.0830 0.0381 0.0857 

(a) Subscript train is referring to the training set, valid is referring to the validation set and the 
pred is referring to the prediction set, tot is referring to the total data set, R is the correlation 
coefficient. 

 

Neural network generation. The specification of 
a typical neural network model requires the choice of 
the type of inputs, the number of hidden layers, the 
number of neurons in each hidden layer and the 
connection structure between the inputs and output 
layers. The number of input nodes in the ANNs was 
equal to the number of molecular descriptors in the 
MLR model. A three-layer network with a sigmoidal 
transfer function was designed. The initial weights 
were randomly selected between 0 and 1. Before 
training, the input and output values were normalized 
between 0.1 and 0.9. The optimization of the weights 
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and biases was carried out according to Levenberg-
Marquardt algorithms for back-propagation of error36. 
The data set was randomly divided into three groups: 
a training set, a validation set and a prediction set 
consisting of 53, 17 and 17 molecules, respectively. 
The training set was used for training of the ANN and 
the validation (monitoring) set was used for 
determination the extent of training. The 
generalization ability of the model was checked using 
the prediction set37. 

The performances of training, validation and 
prediction of ANNs are evaluated by the mean 
percentage deviation (MPD) and root-mean squared 
error (RMSE), which are defined as follows: 

MPD =
N

100 ∑
=

−N

i i

cal
ii

P
PP

1
exp

exp )(
 ... (4) 

RMSE = ∑
=

−N

i

cal
ii

N
PP

1

2exp )(
 ... (5) 

where Pi
exp and Pi

cal are experimental and calculated 
values of pKa with the ANN model and N denote the 
number of data points. 

Individual percent deviation (IPD) is defined as 
follows: 

IPD = 100× ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
exp

exp

i

i
calc

i

P
PP

  ...  (6) 

The processing of the data was carried using 
Matlab 6.5 (Ref. 38). The neural networks were 
implemented using Neural Network Toolbox Ver. 4.0 
for Matlab. 

Conclusion 

A two-descriptor non-linear computational neural 
network model has been developed for prediction of 
acidity constant (pKa) for various acetic acids in water 
using quantitative structure-activity relationship. 
Comparison of the values of RMSE for training, 
validation and prediction sets (and other statistical 
parameters in Table II) for the MLR and ANN 
models demonstrate superiority of the ANN model 
over the regression model. Root-mean square error of 
0.3738 for the prediction set by the MLR model 
should be compared with the value of 0.0857 for the 
ANN model. Since the improvement of the results 
obtained using nonlinear model (ANN) is 
considerable, it can be concluded that the non-linear 

characteristics of the molecular descriptors on the pKa 
values of substituted acetic acids in water is serious. 
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